Composites challenges for a further development in aerospace sector

ICAS Biennial Workshop - September 5, 2011

Christophe BRAND – Head of Global Innovation Network Corporate Technical Office – EADS

Didier LANG – Scientific director – Innovations works – EADS

EADS

EADS programmes are setting global standards

September 5, 2011

Page 2

Composites challenges for a further development in aerospace sector - ICAS Biennial Workshop

September 5, 2011

Outline

Evolution of composites over the last 40 years at EADS

Typical space structure: Some years ago

Drivers

- Weight
- Stiffness
- Dimensionally stable (Thermal stability)
- Thermal "management"

Satellite main structure

Satellite lattice structure

Typical space structure: Communication & observation satellites

Same drivers +

- Versatile platform & technologies for short development lead time of communications satellites
- Very competitive market
- Larger size

TerraSAR-X

Helicopter trends for composite usage

Composites challenges for a further development in aerospace sector - ICAS Biennial Workshop

Helicopter structures & blades evolution

- Trade off between metallic and composites on civil H/C depends on non technical issue
- Looking for processes & materials allowing
 - Automation
 - Integration of parts
 - Integration of functions

with high quality standards

- High concerns with environmental issues
- Market expect disruptive technologies for blades

EC 175

EADS

Typical aircraft structures

Composite structural weight development

A350 XWB puts the right material at the right place

September 5, 2011

AIRCRAFT STRUCTURES EVOLUTION

Market driven

- Increasing size
- Decreasing costs (purchase and use)
- Increasing production rate
- Reducing lead time

Social environment

- REACH compatibility, recycling
- Reduce environmental impact: Noise, fuel consumption, increasing comfort

Increased complexity

- Multi-disciplinary challenges
- Extended supply chain

The 3 main challenges for a further development of composites

Composites challenges for a further development in aerospace sector - ICAS Biennial Workshop

Functionalization From material to design

Recover natural metallic properties

CNT

Prepreg

forest

delamination

- Conductivities
- Tenacity / self healing
- Acoustic & vibration
- Fire Smoke & Toxicity
- Recyclable
- Damage indicator

Lightning strike impact

and arrithmy specifies on

Functionalization From material to design

Integrate functions during manufacturing

- Morphing: Integrating actuators
- Sensing: Sensors integration for Structure Health Monitoring
- Antenna integration
- Integrate functional surfaces (coating, deicing, rain repellant...)
- Protection integrations (thermal barriers, impact shielding, ...)

Ultimate challenge: It requires

- Material engineering knowledge
- & Multi disciplinary skills

September 5, 2011

Increase industrial maturity

Industrial maturity drivers

- Increasing size
- Increasing production rates & versatility
- Cost reduction pressure
- Increasing complexity / technical challenges
- Lead time reduction
- Supply chain reliability

A350 rear fuselage panel

Increase of automation

Technical challenges

- Handle dry fabric & wide prepreg rolls
- Increase deposition rate
- Bagging process

Filament Winding Telescope Cylinder

Increase of automation

Composites challenges for a further development in aerospace sector - ICAS Biennial Workshop

Part integration - Infusion

size
production rates & versatility
Costs
complexity
Lead time
Supply chain reliability

Challenges

- Material performance Improvement
- Tooling complexity
- Process robustness to mitigate risks of unacceptable defects
- Sizing methods !!!!

September 5, 2011

Part integration – Dry preforms for net shape infusion

dry fibers placement

Braiding of frames

Part integration – Bonding & Welding

Example of Mojo FP7 project

Extensively used for space for a long time

Tier n

70-80%

Tier 1

Value Chain

Airbus

20-30%

Reliable, cost effective & large supply chain

Limits of composites have been continuously extended over the last 40 years

- Knowhow & robustness had to be continuously enhanced for new processes
- Mastering "large & automated parts" more & more challenging for suppliers
- Design capabilities are lacking

Standardization to be enhanced

Robustness to be taken into account since the design

Non Destructive Testing (NDT)

Challenges

- Small defects / Complex shape / Fast
- Processing of a huge amount of data

A continuous improvement over several decades

• On-line monitoring

Avenues of research

- Contact-less NDT
- Automatic diagnostic tools

Thickness C-Scan

Sustainability

Stakes: Long term development

- Environment friendly products
- Environment friendly processes
- Material scarcity (Oil, ...)
- Recyclability

Challenges

- High performance requirements
- Low energy, REACh compliant

Axis of research

- Natural fibers
- Non oil resins, low temperature or Out-of Autoclave curing resins
- Room temperature storage resin
- Material re-use

Conclusion

- Still a huge potential of improvement for composites
- Innovative approach involving the extended enterprise needed to
 - 1. Increase industrial maturity
 - 2. Develop multi-functional approach from day 1
 - 3. Ensure a sustainable development of this business

Thanks you for your attention

